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Such cases as figures 2, 3, etc., need a much larger standard of comparison,
L; but these and other results are improved by the use of a small inductor
(say 0.3 hen. in the secondary) and radio telephones. Omitting these,
there-is room here for Graph 4, obtained with the mere exchange of re-
sistances, which merits some further attention. If R is the fixed resistance
commutated, R' and R" the counter values corresponding to positions I
and II, since internally Lo = L4, and Ro = Ro the equations reduce to

+ c' =c V/(R + R0)2 + LOCO2 + cV\(R + R0)2 + L02
I(R11 + Ro)2 + L2,W2 V (R' + Ro)2 + L w2

A solution of this equation is R' = R" = R, so that the paired curves of
figure 4 intersect near R = 0, R = 100, R = 500 ohms (the case R = 100
left without reversal).
The case of As' = 0 and As" = 0 for the two positions I and II, is

available for R = 100 ohms. The other cases (R = 0 and R = 500) do
not reach the abscissa. We thus have again

c \I(R + Ro)2+ L 2C 2 /(R# +Ro)2+L2w2
C' V(R' + Ro)2 + L 2W2 V'(R + Ro)2 + L2wC2

If we insert the values R = 100, R' = 50, R" = 150 ohms, as given by the
graphs and the constants Lo = 0.06 and Ro = 84, we obtain c/c' = 1.16,
in both cases, which agrees very well with c/c' = 1.19 deduced from in-
ductances, in the preceding section.
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The success of the quantum theory and more particularly of that view
of the quantum theory which regards the energy of the quantum as highly
localized has made it seem important to various authors to attempt an

explanation on the basis of that view of some of the phenomena of optics
which have been regarded as typical wave phenomena. In the following
discussion, only a statistical treatment will be attempted; i.e., only large
aggregates of quanta will be considered and the media ttaversed by these
quanta will be regarded as continuous. The first of these restrictions is
rendered advisable by the nature of the phenomena; the terms appropriate
to the discussion of reflection, refraction and radiation pressure are scarcely
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intelligible if applied to only a few quanta. The second restriction is sup-
ported as regards quanta of low energy by the view widely held that such
quanta occupy volumes large in comparison with intra-atomic distances,
so that many electrons may be included in the volume occupied by one
quantum. Compact quanta of large energy, such as those considered as
acting in the Compton effect, are not contemplated in this discussion.

It is assumed at the outset that the quantum traverses a medium with
the velocity of light in that medium. It is further assumed that the
change in velocity of a quantum as it passes from one medium to another
is not accompanied by a change in its energy.
The view is here adopted that the boundary surface between two trans-

parent media has work done upon it by the incident radiation, and that it
does work upon reflected or refracted radiation. By the principle of the
conservation of energy the work in a given time done upon the surface is
then equal to the work done by the surface. Consider a beam of unit
cross-section incident normally upon such a surface. Let n, n' and n" be
the numbers of quanta per second in the incident, reflected and refracted
beams .respectively. We then have by the conservation of energy

nhv = n'hI + n"hv (1)

It is now assumed that the relation of the momentum to the energy in
each beam is such that the work done upon the surface by the incident
beam is proportional to pvl, that done by the surface upon the reflected
beam to p'v1, and that upon the refracted beam to pwv2, where p, p' and
p" are the respective pressures or momenta per square centimeter per
second exerted by the incident, reflected.and refracted radiation upon
the surface, and v1 and v2 are the respective, velocities of light in the media
1 and 2.
We then have from (1)

nhv/pvl = n'hv/p'v1 = n"hp/p"v2 = k (2)

where k is a constant. If the medium 1 is a vacuum, nhv/pc = k = 1,
since nhv/c = p. Accordingly, n'hv/vl = p' and n"h//v2 = p", or, in
general,

nhl/v = p. (3)

Thus the momentum of a linear stream of radiation in any medium is equal
to the energy density of the radiation. From this result it is possible with
the principle of least action to derive Fermat's principle; with the principle
of the conservation of momentum to derive the laws of radiation pressure;
and with the principle of the conservation of energy to derive Fresnel's
equation for the relative intensities of the incident, reflected and refracted.
beams.
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Let us write the principle of least action in the form
fb

a Mds = O

where M is the momentum and ds is the element of distance along the
path from a to b. Replacing M by hv/v, we have for the quantum:

rb
fb/ ds = 0.

v

Replacing ds/v by dt and dividing by hp, the energy of the quantum, as-
sumed constant, we have:

r~~~~~~~b
6 dt= 0, or, b(tb-ta) = 0 (4)

which is the mathematical expression of Fermat's principle. Since the
laws of the angles of incidence, reflection, and refraction are consequences
of Fermat's principle, we are now enabled to use these laws to derive the
laws of radiation pressure.

In the figure, let PQ represent the boundary between two media, 1 and
2. Let the velocity of light in the first medium be vl, in the second medium

be v2. Let a, b and c be, respectively,
the incident, reflected, and refracted

\ /- beams, the angle of incidence being 4
\9sJ\/8,- and the angle of refraction being 0.

P 2 ~q< +>* Q Let the area of the portion of the bound-
~e\ ary intercepted by the beams be unity.

Let n be the number of quanta cross-
ing unit area of the cross-section of the

c incident beam in unit time. Then nhv
will be the intensity of the incident

beam. Similarly let n'hv be the intensity of the reflected beam and
n"hp be the intensity of the refracted beam. The number of quanta
incident in unit time on unit area of the boundary will be n cos 4, the
number reflected from unit area will be n' cos 4, the number refracted
through unit area will be n" cos 0. The normal component of the momen-
tum of the quanta incident in unit time on unit area of the surface will

be it h cos2 4, of the quanta reflected will be -in' - cos2 4, of the quanta
Vi Vj

refracted will be ni" - cos2 0, the positive direction being taken as down-
V2

ward. By the principle of the conservation of momentum the radiation
pressure on the boundary will be
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hv hv hvp =n-cos2 +n'.1-cos2 -n" hcos2O. (5)
V1 VI V2

Replacing nhv by E, the intensity of the incident beam, n'hp by R, the in-
tensity of the reflected beam, and n"hv by D, the intensity of the refracted
beam, we have:

E + R D (6)
p =Cos2 -- Cos2 0. 6

By exactly similar reasoning, we have for the tangential force per unit
area on the boundary (the positive direction being taken to the right):

E-R D
T = cos sin 4t-cosO sin 0. (7)

* ~~ ~~VlV2

These are identical with the expressions derived from the wave theory and
verified experimentally for various cases by Lebedew, Nichols and Hull,
Poynting, and others. (Cf. J. H. Poynting, Phil. Mag., 9, pp. 169-171
and 393-406, 1905.)
By the principle of the conservation of''energy and the constancy of hp,

the number of quanta reaching the surface in unit time is equal to the
number leaving the surface in unit time. That is:

ncos4 =n'cos + n"cosO (8)
whence, since n, n' and n" are respectively proportional to E, R and D,

E-R cos 0
D cos4)

This is equivalent to Fresnel's equation:
a2-b2 tan4)

c2 tanG

where a, b and c are, respectively, the amplitudes of the incident, reflected
and refracted beams; for the intensity of the beam is directly proportional
to the square of the amplitude and inversely proportional to the velocity
of propagation. Hence:

vI (E-R) tan
v2D tan 0

or:
E-R _ vs tan4) _ sin 0 tan4) _ cos 0
D v1 tanG sin 4 tanG cos q

as above.
The essential point of the foregoing discussion is that the laws of re-

flection and refraction of light are inherent in the ascription to the quanttim
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of the momentum hv/v without the use of any other postulate. As to the
extent that the mechanism of radiation is determined by this assumption
the authors have reached no definite conclusion. They believe, however,
that a study of the consequences of this assumption may yield information
on the nature of the quantum itself.

1 The substance of this paper was presented before the American Physical Society,
April 25, 1925. Abstract, Phys. Rev., 25, p. 896, June, 1925.
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Duane (cf. preceding note, page 489) has. applied Epstein and Ehrenfest's2
quantum treatment of the problem of Fraunhofer diffraction to the determi-
nation of the distribution of diffracting power in a crystal. The use of his
ideas leads to the following expression for the "electron density" at a
point (xyz) in the unit cell of a crystal of NaCl:

P(xyA) = A cos 2wnix/a cos 27rn2y/a cos 27rw3z/a (1)(xs i nit h3

where ni, n2, n3 are the Miller indices of the different crystal planes multi-
plied by the number representing the order of reflection; a is the length of
side of the unit cell; An1n2,, is the square root of the intensity of the re-
flection from the plane (nin2n3), and has the same value for all combinations
(plus and minus) of these numbers. The expression "electron density"
will be used for the purpose of brevity, but it must be remembered that
what is obtained from (1) is not necessarily the actual distribution of elec-
trons, but rather the distribution of diffracting power.

In order to determine the electron density at a point in a crystal of
NaCl, it is necessary to have experimental values for the A 's out to fairly
high values of n1n2n3. The best measurements of these quantities have
been made by Bragg, James and Bosanquet.3 Their theoretical expression
for the intensity of reflection of X-rays at an angle 0 from a single crystal
face is:

b sin2 0

Icc N2f2X3 (1 + cos2 20) e- A (2)
F(,u) sin 20

N is the number of electrons per unit volume; f is a function of and
sin 0
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